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Abstract
We prove several previously conjectured results about the number of n-edge
trails and n-edge embeddings of Eulerian graphs, each with a fixed number,
k, of degree 4 vertices, in the lattice Z

2. In particular, under the assumption
that the relevant critical exponents exist, we prove that the difference between
the critical exponent for closed trails (Eulerian graph embeddings) and that for
self-avoiding circuits (polygons) is exactly k, the number of degree 4 vertices.
Similarly, we prove that the difference between the critical exponent for either
open trails or open Eulerian graph embeddings and that for self-avoiding walks
is also k. These results are proved by establishing upper and lower bounds
for the number of n-edge embeddings of closed (open) Eulerian graphs with k
vertices of degree 4 in terms of the number of n-edge self-avoiding polygons
(walks). The lower bounds are proved using a Kesten pattern theorem argument
and the upper bounds are established by developing (based on a detailed case
analysis) a method for removing vertices of degree 4 from an embedding by
altering at most a constant (independent of n) number of vertices and edges of
the embedding. The work presented here extends and improves the arguments
first given in the work of Zhao and Lookman (1993 J. Phys. A: Math. Gen. 26
1067–76).

PACS number: 05.50.+q

1. Introduction

The self-avoiding walk model has been established as a standard model of linear polymers
in dilute solution in a good solvent. Similarly, lattice trail, lattice tree, lattice animal and
self-avoiding polygon models have become standard models for branched and ring polymers.
Recent studies of lattice trails have provided evidence that trails and self-avoiding walks are
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in the same universality class. Specifically, the evidence from exact enumeration and transfer
matrix studies on a variety of lattices [1–7] indicates that the critical exponent for trails is
the same as the critical exponent for self-avoiding walks. However, the exponential growth
rate (with the number of steps or edges) of lattice trails is greater than that of self-avoiding
walks [8]. There is an analogous situation with regard to lattice animals and lattice trees;
that is, lattice animals and trees are believed to be in the same universality class, however,
their exponential growth rates are different [9]. For this case, it is also known that c-animals
(lattice animals with a fixed cyclomatic index c) have the same exponential growth rate as
lattice trees and, based on combinatorial bounds, are expected to have a critical exponent
which is increased by an amount c from that for lattice trees [10]. In this paper, a related
question for lattice trails on the square lattice is investigated by focussing on the number
of n-step trails with a fixed number of vertices of degree 4, and deriving combinatorial
bounds relating the number of such trails to the number of n-step self-avoiding walks or
polygons. The work presented here extends and improves the arguments first given by Zhao
and Lookman [8] on a similar question. Since there is a connected subgraph of the lattice
with either zero or two vertices of odd degree underlying each lattice trail, the approach
used here is first to obtain bounds for the number of such lattice subgraphs. This is done by
viewing the lattice subgraph as an embedding in the lattice of an abstract graph τ and using
the known properties of gn(τ ), the number of such embeddings with n edges. In addition,
new bounds are derived for gn(τ ) in the case that τ has either zero or two vertices of odd
degree.

For v = (v1, . . . , vd), w = (w1, . . . , wd) ∈ R
d , define ‖v − w‖ = |v1 − w1| + · · · +

|vd − wd |. The hypercubic lattice Z
d will be viewed as the infinite graph with vertex set

V (Zd) = {(x1, . . . , xd)|xi ∈ Z, i = 1, . . . , d} and edge set E(Zd) = {{v,w}|v,w ∈ V (Zd),
‖v −w‖ = 1}.

An n-step self-avoiding walk (n-SAW), ω, in the hypercubic lattice Z
d is a sequence of

distinct vertices r0, r1, . . . , rn in V (Zd) such that ri−1 and ri are joined by an edge in E(Zd)
for i = 1, . . . , n. The n-SAW ω is said to start at r0 and end at rn and, for i = 1, . . . , n, the
edge from ri−1 to ri is called the ith step of the walk. The number of n-SAWs in Z

d starting
at the origin is denoted by cdn .

An n-step trail (n-trail), σ , in Z
d starting at s0 is a sequence of n distinct edges

α1, α2, . . . , αn in E(Zd), such that αi = {si−1, si} for i = 1, . . . , n; αi is said to be the
ith step of the trail and is traversed from si−1 to si , and vertex si is said to be traversed (or
entered) from the ith step. Such a trail σ is also referred to as an n-trail connecting s0 to
sn. The n-trail rev(σ ) ≡ (αn, αn−1, . . . , α1), obtained by reversing the order of σ edges,
is referred to as the reverse trail of σ . Note that if s0, s1, . . . , sn are distinct vertices in
V (Zd), then σ is an n-SAW. The number of n-trails in Z

d starting at the origin is denoted
by tdn . An n-step closed trail or trailgon is a trail such that s0 = sn. The number of

n-trailgons in Z
d starting at the origin is denoted

◦
tn
d . For any i = 1, . . . , n, the n-trailgon

cycsi−1
(σ ) ≡ (αi, αi+1, . . . , αn, α1, α2, . . . , αi−1), obtained from an n-trailgon σ by a cyclic

permutation of its edges, is referred to as the cyclic permutation of σ starting at si−1. A trail
which is not closed is called an open trail. The number of open n-trails in Z

d starting at the
origin is denoted by t̆ dn .

An n-step self-avoiding circuit (n-SAC) is a trailgon such that the vertices s0, . . . , sn−1

are all distinct. The number of n-SACs in Z
d starting at the origin is denoted by qdn . For

a given n-SAC σ ,
{
cycsi−1

(σ ), cycsi−1
(rev(σ )), i = 1, . . . , n

}
forms a set of 2n distinct n-

SACs originating from σ . This set of n-SACs can be regarded as a single geometrical entity,
which is called an n-edge self-avoiding polygon (n-SAP). Equivalently an n-SAP is a connected
n-edge, n-vertex subgraph of Z

d in which each vertex has degree 2. Two n-SAPs are considered
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equivalent if one is a translate of the other. The number of distinct n-SAPs in Z
d is denoted

by pdn . Note that qdn = 2npdn .
An n-edge lattice animal (n-animal) in Z

d is any connected n-edge subgraph of Z
d . Two

n-animals are considered equivalent if one is a translate of the other. An abstract connected
graph τ is said to be homeomorphically irreducible if it has no vertices of degree 2, or if it
has exactly one vertex, and this vertex has degree 2 (i.e. a loop graph). Let G2d be the set of
all homeomorphically irreducible abstract connected graphs having at least one edge and with
maximum vertex degree less than or equal to 2d . An n-animal in Z

d is said to be an n-edge
embedding of a graph τ ∈ G2d if the n-animal is homeomorphic to τ (i.e. isomorphic to τ
when vertices of degree 2 are suppressed). An n-SAP is considered an embedding of the loop
graph. An n-edge embedding of a graph τ ∈ G2d will be referred to as an n-tau. The number
of distinct (up to translation) n-taus in Z

d is denoted by gdn(τ ).
Hammersley [11, 12] proved (see also [13]) that

0 < lim
n→∞ n

−1 log cdn = lim
n→∞ n

−1 logpdn ≡ logµd < log(2d − 1) (1.1)

where the second limit is taken through even values of n. Hence the number of walks and
the number of polygons both increase with n, at the same exponential rate. Soteros et al [14]
proved that for any τ ∈ G2d such that there exists n > 0 with gdn(τ ) > 0,

0 < lim
n→∞ n

−1 log gdn(τ ) = logµd (1.2)

where the limit is taken through all values of n for which gdn(τ ) > 0. Hence the number of
n-taus increases exponentially with n, at a rate which is independent of τ , and at the same rate
as that for n-SAWs. Guttmann [2] proved the existence of the following limit for lattice trails,
and Zhao and Lookman [8] proved the second inequality in

0 < logµd < lim
n→∞ n

−1 log tdn ≡ logµT,d . (1.3)

It is believed that
cn = µnnγ−1 eo(logn)

pn = µnnαsing−3 eo(log n) = µnnγ0−1 eo(log n)

qn = µnnαsing−2 eo(logn) = µnnγc−1 eo(logn)

gn(τ ) = µnnγτ−1 eo(logn)

tn = µnT n
γ−1 eo(logn)

(1.4)

where γ0 ≡ αsing − 2 and γc ≡ γ0 + 1, and the dependence on dimension, d, has been dropped
for simplicity. In each case, it is also believed that the leading term in eo(logn) is a constant,
independent of n, and that, for example, γ > γ0. However, there is no rigorous proof for
equations (1.4) beyond the existence of the growth constants µ and µT . The exponents γ , γ0,
γc, and γτ are known as critical exponents for SAWs, SAPs, SACs and n-taus, respectively. For
fixed d and τ , these critical exponents are believed to be independent of the lattice structure.
For the purposes of this paper, we assume that the limits defining these critical exponents
do exist, that is, we assume equations (1.4) are true. Under this assumption, Guttmann and
Whittington [15] (see also [8]) have proved that γtadpole = γdumbbell = γ . Furthermore, it has
been conjectured that

γfigure8 ≡ γfigure-eight = γ0 + 1 (1.5)

and

γtwin-tailed tadpole = γ + 1 (1.6)

but the best that has been proved is that γ0 +1 � γfigure8 � γ0 +2, and γ +1 � γ twin-tailed tadpole �
γ + 2 ([8, 15, 16] and section 2 of this paper). In this paper, we focus on Z

2 and establish
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some general critical exponent relationships for certain n-taus and specific subsets of n-trails.
Then, for example, equations (1.5) and (1.6) follow from these general results.

In particular, let Gi4(k) be the subset of G4 consisting of planar graphs with i vertices of
odd degree and exactly k vertices of degree 4. For any τ ∈ G2

4(k)
(
G0

4 (k)
)
, Euler’s theorem

[17] implies that τ contains an open (closed) trail which uses every edge of the graph, an Euler
trail, and hence each n-tau may be converted to an open (closed) n-trail, by finding an Euler
trail of the n-tau. We thus refer to τ ∈ G2

4(k)
(
G0

4(k)
)

as an open (closed) Eulerian graph with
k vertices of degree 4, or an open (closed) k-graph, for short. The number (up to translation)
of n-edge embeddings in Z

2 of all open k-graphs is defined by

Ĕn(k) ≡
∑

τ∈G2
4 (k)

gn(τ ) (1.7)

while the number (up to translation) of n-edge embeddings in Z
2 of all closed k-graphs is

defined by
◦
En(k) ≡

∑
τ∈G0

4 (k)

gn(τ ). (1.8)

Since for fixed k and i the number of graphs in Gi4(k) is a positive constant independent
of n, equations (1.2), (1.7) and (1.8) imply that for fixed k

0 < lim
n→∞ n

−1 log Ĕn(k) = lim
n→∞n

−1 log
◦
En(k) = logµ. (1.9)

Consistent with the beliefs about cn, one expects that for fixed k

Ĕn(k) = µnnγ̆ (k)−1 eo(logn) and
◦
En(k) = µnn

◦
γ (k)−1 eo(logn). (1.10)

Then, since the conjectured equations (1.5) and (1.6) imply
◦
γ(1) = γfigure8 = γ0 + 1 and

γ̆ (1) � γtwin-tailed tadpole = γ + 1, it has been conjectured that, for all k � 0

◦
γ(k) = γ0 + k (1.11)

and

γ̆ (k) = γ + k. (1.12)

Indeed, in this paper, we establish equations (1.11) and (1.12) by means of the following
central result:

Main theorem. There exist positive constants ε, C̃, D̃, C, D0, D, Nε and a set of graphs{
τ ik ∈ Gi4(k), k � 0, i ∈ {0, 2}} such that for all n � Nε and for any k � 0,

C̃

(�εn�
k

)
pn � gn

(
τ 0
k

)
�

◦
En(k) � Ck

(
2n

k

)
pn (1.13)

and

D̃

(�εn�
k

)
cn � gn

(
τ 2
k

)
� Ĕn(k) � D0(D)

k

(
2n

k

)
cn (1.14)

where the lower bounds hold for all d � 2 and the upper bounds hold for d = 2.

The graph τ 0
k

(
τ 2
k

)
in the above theorem is referred to as the k-daisy (k-loop twin-tailed tadpole)

graph and will be defined in detail later. However, the special cases τ 0
1 , τ 2

1 and τ 0
0 are the

figure-eight, twin-tailed tadpole and loop graphs, respectively, while τ 2
0 is the graph which is

homeomorphic to an undirected SAW.
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This main theorem implies for d = 2 that

gn
(
τ 0
k

) = pnn
k eo(logn) ◦

En(k) = pnn
k eo(logn) (1.15)

gn
(
τ 2
k

) = cnn
k eo(logn) Ĕn(k) = cnn

k eo(log n). (1.16)

Assuming equations (1.4), then for d = 2 and for any k � 0 equations (1.11) and (1.12) now
follow, upon dividing equations (1.15) and (1.16) by µn, taking logarithms, dividing by logn,
and finally letting n go to infinity. Furthermore, the same argument yields

γ
τ 0
k

= γ0 + k and γ
τ 2
k

= γ + k (1.17)

for the k-daisy and k-loop twin-tailed tadpole graphs. For the case that k = 1 this gives
equations (1.5) and (1.6), in Z

2.
The main theorem also yields bounds for trails in terms of SAWs and SAPs from which

further relationships between critical exponents can be obtained. To see this, consider t̆n(k)

(
◦
tn(k)), the number of open (closed) n-trails in Z

2 starting at the origin and with exactly k
vertices of degree 4. Given any open (closed) k-graph τ ∈ G2

4(k)
(
G0

4(k)
)
, associated with each

n-tau there is at least one distinct n-trail, σ . For the case of a closed k-graph, σ is one of a set
of 2n distinct n-trailgons all obtained from σ by either a cyclic permutation of the edges of σ

or by a cyclic permutation of the edges of rev(σ ). Thus 2n
◦
En(k) �

◦
tn(k). Meanwhile, for an

open k-graph, σ and its reverse trail form a set of two distinct n-trails. Thus 2Ĕn(k) � t̆n(k).
An upper bound on the number of distinct n-trails associated with an n-tau can be obtained

by considering an upper bound on the number of ways to add edges (one at a time) from the
n-tau to build an n-trail. For a closed k-graph, there are n ways to pick the first edge, α1, of a
trailgon and then two ways to pick one of its two endpoints as the trailgon’s starting vertex, s0.
Every vertex of degree 2 in the n-tau is traversed once and every vertex of degree 4 is traversed
twice by any n-trailgon of the n-tau. For any vertex, si , of degree 2 which is traversed from
the ith step of a trailgon, there is only one way to pick the (i + 1)th step, αi+1. For any vertex,
si , of degree 4 which is traversed for the first time from the ith step of a trailgon, there are at
most three ways to pick the edge αi+1 and then the next time the vertex is traversed (from step

j say) there is only one way to pick the next edge, αj+1. Thus
◦
tn(k) � 2(3)kn

◦
En(k). For an

open k-graph, there are two ways to pick an odd degree vertex as the trail’s starting vertex, s0.
There are then at most three ways to choose α1, the first edge of the trail, and should the trail
ever traverse s0, there is only one way to choose the next edge. As in the closed k-graph case,
there is one way to choose the next edge when a trail traverses either a vertex of degree 2 or
a vertex of degree 4 for the second time, and there are at most three ways to choose the next
edge when a trail traverses a vertex of degree 4 for the first time. Finally, there are at most two
ways to choose the next edge when a trail meets the last vertex for the first time. In summary,
the following bounds are obtained

2Ĕn(k) � t̆n(k) � 4(3)k+1Ĕn(k) and 2n
◦
En(k) �

◦
tn(k) � 2(3)kn

◦
En(k). (1.18)

Thus, assuming equations (1.4), the bounds from equations (1.18), (1.13) and (1.14) imply
that

t̆n(k) = µnnγ+k−1 eo(logn) and
◦
tn(k) = µnnγc+k−1 eo(logn). (1.19)

The primary focus of the remainder of the paper will be the proof of the main theorem.
However, we start by reviewing known results related to the main theorem bounds in
section 2. In section 3, the Kesten pattern theorem is used to establish the main theorem
lower bounds for all d � 2. In the remainder of the paper, the corresponding upper bounds for
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d = 2 are established by mapping closed (open) k-graph embeddings to SAPs (SAWs), in such
a way that the original embedding is affected only locally around the vertices of degree 1, 3 or
4, while the rest of the graph remains untouched. To construct the proper maps, an algorithm
is developed which allows for the removal (one at a time) of each vertex of degree 4 in
lexicographical order. This approach is broken down into several stages, as follows: removal
of an isolated vertex of degree 4, from an n-edge embedding of a closed k-graph, within a
4 × 4 square box (sections 4.2.1 and 4.2.2); removal of the top vertex of degree 4 in an n-edge
embedding of a closed k-graph, within a 10 × 10 box (section 5); removal of the top vertex
of degree 4 in an n-edge embedding of an open k-graph, within a 12 × 12 box (section 6);
an algorithm to remove all vertices of degree 4, by repeatedly removing consecutive top
vertices of degree 4 (section 7). Using combinatorial arguments, the main theorem upper
bound is at last established in section 8.

2. Review of existing bounds for gn(τ )

We begin by reviewing results previously known with regard to gn(τ ) for specific choices of
τ : namely, tadpoles, figure-eights and twin-tailed tadpoles.

The unit vectors in Z
d are denoted by the d-tuples u1 = (1, 0, . . . , 0), u2 =

(0, 1, 0, . . . , 0), . . ., ud = (0, . . . , 0, 1). Vertices in Z
d are ordered lexicographically

according to their coordinates. Based on this ordering, the top vertex (bottom vertex) of
an n-animal, ω, is defined to be the largest (smallest) vertex amongst the vertices of ω.

For the tadpole graph, an upper bound for gn(tadpole) in terms of cn can be obtained
by considering any n-tadpole whose vertex of degree 1 is located at the origin. Deleting an
appropriate edge (there are always two choices for this edge) adjacent to the vertex of degree 3
in the n-tadpole creates an (n−1)-SAW starting at the origin. Since there are at most (2d−1)
ways to add a step to an (n− 1)-SAW to create an n-tadpole, this argument yields the bound
2gn(tadpole) � (2d − 1)cn−1. Zhao and Lookman [8] have described a method for obtaining
a lower bound for gn(tadpole) in terms of cn by converting an n-SAW into an (n + i)-tadpole
for either i = 1, 2 or 3 (note that it is possible that up to two n-SAWs could yield the same
n-tadpole by this construction). These arguments apply to any hypercubic lattice, Z

d , and
combined with the fact that cdn−1 � cdn [18] yield the following.

Theorem 1 (Zhao and Lookman [8]). For any d � 2 and any n � 2

cdn � 2
3∑
i=1

gdn+i(tadpole) � 3(2d − 1)cdn+2 (2.1)

and hence, assuming the existence of the limit that defines γ in equation (1.4), γ (tadpole) = γ .

For the figure-eight graph, Guttmann and Whittington [15] developed a useful one-to-one
mapping between n-edge embeddings of the figure-eight graph (n-figure8) in Z

2 and a subset
of doubly vertex-rooted polygons in Z

2. The map is based on the basic moves shown in
figure 1.

The transformation used to go from the figure-eight embedding depicted in figure 1(a) (or
its reflection through the vertical axis) to the ‘solution’ configuration is referred to as a flip and
the inverse transformation as a reverse flip. Note that the result of a flip on an n-figure8 can
be either an n-SAP or another n-figure8. The transformation used to go from the figure-eight
embedding depicted in figure 1(b) (or its reflection through either the line y = −x or the
vertical axis or both) to the ‘solution’ configuration is referred to as a U-turn reduction and
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Figure 1. (a) depicts a flip transformation and (b) depicts a U-turn transformation. These figures
also show solutions for cases (1) and (2) in section 4.2.2. Bold solid edges are occupied, dashed
edges are not occupied, and fine solid edges may or may not be occupied. Double hash marks
indicate edges which have been removed, during the solution.

the inverse transformation as a U-turn expansion. A U-turn reduction always converts an
n-figure8 into an n-SAP.

Theorem 2 (Guttmann and Whittington [15]). There exists a one-to-one map� such that for
any n-figure8, ω, in Z

2,

� : ω → (ω′, ψ1, r) (2.2)

where ω′ is an m-edge polygon, ψ1 is a distinct vertex of ω′ (corresponding to the vertex of
degree 4 in ω), r < n is a positive integer, and (ω′, ψ1, r) has the property that for a unique
choice of δ ∈ {−1, 1} the following holds. (Note that δ = 1 (−1) corresponds to a classA (B)
n-figure8 ω as defined in [15].)

The edges {ψ1 −δu1, ψ1} and {ψ1 +u2, ψ1} are not edges ofω′ and either (i) exactly one of
the edges {ψ1 −δ(r−1)u1 + ru2, ψ1 −δru1 + ru2} or {ψ1 −δru1 + (r−1)u2, ψ1 −δru1 + ru2}
is an edge of ω′, or (ii) both of the edges {ψ1 − δ(r − 1)u1 + ru2, ψ1 − δru1 + ru2} and
{ψ1 − δru1 + (r − 1)u2, ψ1 − δru1 + ru2} are edges of ω′.
Furthermore, in case (i) m = n − 2 and performing (starting at ψ1) a sequence of r reverse
flips followed by a U-turn expansion turns ω′ into ω; and in case (ii), m = n and performing
a sequence of r reverse flips starting at ψ1 turns ω′ into ω.

Corollary 1. There exist positive constants A and NA such that for all even n � NA

Anpn � gn(figure8) � n2pn. (2.3)

Proof. The lower bound in equation (2.3) was proved in Zhao and Lookman [8] by a Kesten
pattern theorem argument (see section 3 of this paper for more details).

The upper bound in equation (2.3) comes from determining an upper bound on the number
of distinct ω which yield the same ω′ under the map � of theorem 2. Madras [19] pointed
out that (contrary to the claim in [15] that only ψ1 is needed) it is essential to know both ψ1

and r to determine ω from ω′ completely. For example, if only ω′ and ψ1 are known, then ω′

(rooted at ψ1) at the top of figure 2 could have resulted from any of the four ω shown below it
in figure 2. In particular, for any triple�(ω) =(ω′, ψ1, r) there are r (one for each value of r ′,
1 � r ′ � r) distinct figure-eight embeddings that yield triples of the form (ω′, ψ1, r ′). There
are no more than n choices for r and no more than n choices for ψ1 so that the upper bound in
equation (2.3) is an upper bound on the number of distinct triples (ω′, ψ1, r ′) that could have
resulted from distinct figure-eight embeddings. �
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Figure 2. The topmost rooted polygon, a theorem 2 case (ii) (δ = 1) polygon, could have resulted
from any one of the four figure-eight embeddings shown below it for r = 1, 2, 3, 4, from left to
right respectively.

Gaunt et al [16] showed that the same transformation could be applied to twin-tailed
tadpoles in Z

2 to produce a self-avoiding walk.

Theorem 3 (Gaunt et al [16]). The map � of theorem 2 acts on an n-twin-tailed tadpole, ω,
in Z

2 such that

� : ω → (ω′, ψ1, r) (2.4)

whereω′ is an m-edge undirected walk with n−2 � m � n,ψ1 is a vertex ofω′ (corresponding
to the vertex of degree 4 in ω), r < n is a positive integer and exactly one of the conditions
of theorem 2 holds. Furthermore, ω′ can be turned into ω as described in theorem 2 with the
additional possibility that m = n− 1 in case (i).

Corollary 2. There exist positive constants B and NB such that for all n � NB

Bncn � gn(twin-tailed tadpole) � n2cn. (2.5)

Zhao and Lookman [8] also discussed how some of these arguments can be extended
to k-loop twin-tailed tadpole graphs (see the next section for a definition of these graphs)
for fixed k. However, their approach does not lead to upper bounds in the form of those in
equation (1.14).

3. Lower bound

The goal of this section is to establish the lower bounds in equations (1.13) and (1.14) for Z
d .

In order to define the graphs τ ik , i = 0, 2, that appear in these lower bounds, it is useful to
first introduce some consequences of Kesten’s pattern theorem [20] and then show how they
can be used to prove that all except exponentially few SAWs or SAPs can be converted to
embeddings of an appropriate k-graph.

A Kesten pattern [20] is any prescribed finite-step SAW P such that there exists at least
one longer SAW ω, which contains three or more translates of P. Given a Kesten pattern P,
define cn(εn, P ) to be the total number of n-SAWs starting at the origin which contain more
than �εn� translates of the Kesten pattern P . The following is a consequence of Kesten’s
pattern theorem [20], which holds for any d � 2:

Theorem 4. Given any Kesten pattern P , ∃ εP > 0 such that

lim
n→∞

cn(εP n, P )

cn
= 1. (3.1)
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(b)

(a)

P  =
~

Figure 3. (a) An undirected Kesten pattern P̃ . (b) L-to-Loop transformation of P̃ into a loop
shape, via removal of two edges and addition of two other edges.

Corollary 3. Given any Kesten pattern P , ∃ εP > 0 and NP > 0 such that ∀n � NP ,
cn

2
< cn(εP n, P ) � cn. (3.2)

Let P̃ be the undirected walk (obtained by ignoring the directions on the edges) associated
with the Kesten pattern P. Definepn(εn, P ) to be the total number, up to translation, of n-SAPs
such that more than �εn� distinct translates of P̃ appear as subgraphs of the SAP. Then

Corollary 4 (Sumners and Whittington [21]). Given any Kesten pattern P , ∃ εP > 0 such
that

lim
n→∞

pn(εP n, P )

pn
= 1. (3.3)

Corollary 5. Given any Kesten pattern P , ∃ εP > 0 and MP > 0 such that ∀n � MP ,
pn

2
< pn(εP n, P ) � pn. (3.4)

Let P̃ denote the undirected walk shown in figure 3(a) and let P be a fixed Kesten pattern
obtained by assigning a direction to P̃ . Let εP > 0 andMP > 0 (NP > 0) be as required for the
result in corollary 5 (corollary 3). Given any n-SAP (SAW) containing M � �εP n� � k � 1
copies of P̃ (P), the n-SAP (SAW) can be converted to an n-embedding of the graph τ 0

k

(
τ 2
k

)
,

referred to here as a k-daisy (k-loop twin-tailed tadpole) graph, by performing k L-to-loop
transformations, defined in figure 3(b), and then ignoring the orientation of the edges (if
necessary). Note that for a given k, this conversion process uniquely defines the graph τ 0

k

(
τ 2
k

)
.

There are at least
(
M

k

)
�

(�εP n�
k

)
ways to perform k L-to-loop transformations. From this and

the lower bounds from equations (3.2) and (3.4), we have

1

2

(�εP n�
k

)
cn � gn

(
τ 2
k

)
�

∑
τ∈G2

4 (k)

gn(τ ) = Ĕn(k) (3.5)

for all n � NP (a bound of this form was first derived by Zhao and Lookman [8]), and

1

2

(�εP n�
k

)
pn � gn

(
τ 0
k

)
�

∑
τ∈G0

4 (k)

gn(τ ) = ◦
En(k) (3.6)

for all n � MP . Note that for equation (3.5), the fact that gn
(
τ 2

0

) = cn/2 was used for the case
k = 0. Thus, the lower bounds of equations (1.13) and (1.14) are proved, with C̃ = D̃ = 1

2 .
One consequence of the above lower bounds is that it can be shown (contrary to the

conjecture in [16]) that the critical exponent for a graph with b > 0 cut-edges is not necessarily
γ + b − 1. Indeed, a graph, τ̂ , whose critical exponent (if it exists) is strictly greater than
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γ +b−1 can be constructed as follows. Let ω be an n-edge embedding in Z
d of τ 0

k (the k-daisy
graph) for some k � 1. Consider a self-avoiding circuit of ω which intersects exactly one
degree 4 vertex, v, of ω, i.e. consider one of the ‘petals’ of the k-daisy graph. Remove an edge
of the SAC incident on v. The resulting (n − 1)-edge embedding, ω′, is homeomorphic to a
graph τ̂ ∈ G2

4(k−1), referred to as the (k−1)-daisy tadpole. This argument and equation (3.6)
lead to (�εP n�

k

)
pn � gn

(
τ 0
k

)
� gn−1(τ̂ ). (3.7)

Assuming equations (1.4) hold with γ > γ◦, let δ = γ − γ◦ > 0. Then for k � δ + 1, dividing
equation (3.7) by µn, taking logarithms, dividing by logn, and finally letting n go to infinity
leads to

γτ̂ � γ◦ + k = γ + k − δ � γ + 1 = γ + b > γ + b − 1 (3.8)

where b = 1 is the number of cut-edges in τ̂ .

4. Isolated vertex of degree 4

4.1. Preliminary definitions

For this discussion, let G = (VG, EG) be a graph consisting of a set of vertices, VG, and their
incident edges, EG. For all of the graphs, G, which follow, we impose the conditions that
each vertex v ∈ VG has at least one incident edge and that each edge α ∈ EG has two distinct
vertices, say v ∈ VG and w ∈ VG, incident on it. Hence G is completely defined by EG and,
where the context is clear, EG is used interchangeably with G. Because of these stipulations,
it is henceforth to be understood that, if G is a subgraph of H (denoted by G ⊂ H ) then the
graph H \G (or H \EG) is the subgraph of H whose edge set is EH \EG and whose vertex set
consists of precisely those vertices in VH which are incident on edges in EH \EG. The degree
of a vertex v in a graph G, the number of distinct edges of G incident on v, is denoted by
degG(v). When the context is clear, we drop the subscript G and write deg(v). Further, if
degG(v) = m is odd (even), then we say that v is an odd vertex (even vertex). In the case that
G is a subgraph of Z

2, for any v ∈ Z
2 such that v /∈ VG we define degG(v) = 0.

A trail, p, of G is a sequence of distinct edges (α1, α2, . . . , αn) in EG, such that αi =
{si−1, si} for i = 1, . . . , n. If there exists 1 � i � j � n such that p′ = (αi, αi+1, . . . , αj ),
then p′ is said to be a consecutive subtrail of p.

Let G be a graph. Two vertices v ∈ VG and w ∈ VG are said to be nearest neighbours
(NN), if there exists an edge in EG, connecting v and w. For a connected graph G, vertex v is
a cut vertex if G becomes disconnected after the removal of v and all of its incident edges.

Next, we highlight some properties of closed (open) Eulerian graphs, those graphs which
contain a trail that uses each edge of the graph.

Theorem 5 (Euler’s theorem [17]). A connected graph contains a closed (open) Euler trail if
and only if all the vertices of the graph are even (exactly two vertices are odd).

The following results are consequences of Euler’s theorem and its proof.

Lemma 1. Let G be a connected graph with only even vertices. Let a ∈ VG be a vertex with
degG(a) = 4. Let S = {b, c, d, h} be the set of four NN vertices to a. Choose any one of the
vertices in S, say c. Then G has a trail, p, not containing a, from c to some vertex v ∈ S\{c}.

We need to make two more lemmas (further consequences of Euler’s theorem) which will
determine whether a connected graph remains connected, upon the deletion of a certain choice
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Figure 4. Isolated vertex of degree 4 in Eulerian trail E: degE([0]) = 4 and degE([i]) ∈ {0, 2},
for 1 � i � 20. The bold solid curve indicates the edges which are occupied. All other edges may
or may not be occupied. The trail p connects vertex [1] to vertex [2]; q connects [3] to [4]; neither
p nor q contains [0]; and p and q may share no common edge. L, 
, BkL, and Bk
 are indicated
by the dotted lines.

of edges. The first lemma involves the removal of a subtrail. The second lemma involves
classifying a vertex of degree 4 as cut or not cut. For the remainder of this section, we assume
that τ ∈ ∪k�0G0

4(k), the set of closed k-graphs, for k � 0.

Lemma 2. Let G be any graph which is homeomorphic to τ . Suppose that for some j � 2, we
are given a sequence of distinct edges, p = (α1, α2, . . . , αj ), which forms an open (closed)
trail of G and let E = {α1, . . . , αj }. If there exists a closed Euler trail of G which contains p
as a consecutive subtrail then the graphG\E contains an open (closed) Euler trail and hence
is connected.

Recall that if G is an n-tau, then G is an n-edge connected subgraph of Z
2 which is

homeomorphic to τ and hence G is planar and has only even vertices. More generally, we
state that G is an n-edge plane embedding of τ if G is a planar depiction in R2 of an n-edge
graph which is homeomorphic to τ . Thus every n-tau is also an n-edge plane embedding of τ .

Lemma 3. Let G be a plane embedding of τ . Let degG(a) = 4, for some vertex a ∈ VG. Let
c, d, b and h be the four NN vertices of a, listed in clockwise order around a. Then a is not a
cut vertex if and only if both of the following occur:

(i) G has a trail r, not containing a, which connects c and b;
(ii) G has a trail s, not containing a, which connects d and h.

To facilitate further discussion, we introduce S[0], a subgraph of Z
2, consisting of 21

vertices in V (Z2), labelled 0, 1, . . . , 20, and 24 corresponding incident edges in E(Z2), shown
in figure 4. S[0] is basically a 4 × 4 square grid, minus the four outer corners. The vertex
labelled as i is referred to as vertex [i], or simply [i], for i = 0, 1, 2, . . . , 20. In addition, we
use [i, j ] to denote the edge with endpoints [i] and [ j]. When we wish to indicate direction

along an edge, we use
−→

[i, j ] to denote the traversal of the edge in the direction from vertex
[i] to [ j ]. We also observe that the line y = x goes through the vertices [0], [6] and [8].
For simplicity, the edge set, {e1, . . . , em} = ∪mi=1{ei}, which defines a subgraph of S[0] will be
denoted by ∪mi=1ei .

The boundary SAP of S[0] defined by the vertex set, {[11], [17], [7], [18], [12], [19], [8],
[20], [9], [13], [5], [14], [10], [15], [6], [16]}, divides the plane R

2 into a bounded region,
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referred to as I (S[0]) or inside S[0], and an unbounded region, referred to asO(S[0]) or outside
S[0]. It is assumed that the boundary SAP is part of I (S[0]).

For convenience, we set L = [6, 15] ∪ [6, 16] and 
 = [7, 17] ∪ [7, 18] to be the two
L-shaped subgraphs in the upper and lower right-hand corners of the grid, respectively. The
‘backward’ L-shapes in the upper and lower left-hand corners of the grid are similarly defined
as BkL = [5, 13] ∪ [5, 14] and Bk
 = [8, 19] ∪ [8, 20] (see figure 4).

Suppose G is any subgraph of Z
2 with at least one vertex of degree 4. Let v be a vertex

of degree 4 in G. Translate the 4 × 4 square grid S[0] so that vertex [0] in S[0] coincides with
vertex v in G. If degG([i]) ∈ {0, 2}, for 1 � i � 20, then we say that v is an isolated vertex of
degree 4 in G.

4.2. Isolated vertex lemma

Lemma 4. Given any closed k-graph τ , let G be an n-tau in Z
2. Suppose v is any isolated vertex

of degree 4 in G, and translate the 4×4 box S[0] so that [0] coincides with v. Then it is possible,
by only altering edges and vertices of G within S[0], to construct a new closed Eulerian
m-animal G′ rooted at [0], with k − 1 vertices of degree 4, and with m ∈ {n, n − 2, n − 4},
such that G′ = G outside S[0], and degG′([0]) = 2.

Furthermore, this can be accomplished so that if we are given an open trail C of G
consisting of edges outside S[0] and such that C is a consecutive subtrail of an Euler trail of
G, then G′ also has an Euler trail which contains C as a consecutive subtrail.

Proof. The purpose of the second paragraph of the lemma is so that this result can be later
used to deal with the case where τ is an open k-graph. Also for this purpose, we note that
the proof presented next in fact applies to any n-edge plane embedding, G, of τ such that
G ∩ I (S[0]) is a subgraph of S[0].

To begin the proof, let G, v, S[0] and C be as described in the statement of the lemma.
Euler’s theorem and the planarity of G dictate that there is an Euler trail E of G in at least one
of the following three forms:

(I)

E =
−→

[0, 1]; r;
−→

[3, 0];
−→

[0, 2]; s;
−→

[4, 0] (4.1)

where r and s are subtrails of E, neither r nor s contains [0], and either C or rev(C) is a
consecutive subtrail of one of r or s.

(IIa)

E =
−→

[0, 1];p;
−→

[2, 0];
−→

[0, 3]; q;
−→

[4, 0] (4.2)

where p and q are subtrails of E, neither p nor q contains [0], and either C or rev(C) is a
consecutive subtrail of one of p or q.

(IIb)

E =
−→

[0, 1];p;
−→

[4, 0];
−→

[0, 3]; q;
−→

[2, 0] (4.3)

where p and q are subtrails of E, neither p nor q contains [0], and either C or rev(C) is a
consecutive subtrail of one of p or q.

If G has an Euler trail of the form (I), then we say that the embedding G is type (I) relative
to v and C. If G is not type (I) relative to v and C, and if it has an Euler trail of the form (IIa),
we say that G is type (II) relative to v and C. Finally, if G is neither type (I) nor type (II)
relative to v and C, it must have an Euler trail of the form (IIb), and we say that it is type (IIb)
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relative to v and C. It is emphasized that the form (without reference to C) of the Euler trail
is not enough to specify the type of embedding. For instance, it is possible for G to have an
Euler trail as given in equation (4.1), and yet not be of type (I). This would happen if for every
possible choice of an Euler trail in this form both C and its reverse are consecutive subtrails
of neither r nor s. We also note that we need only prove lemma 4 for type (I) and type (II)
embeddings, relative to a given (but arbitrary) choice of v and C. This follows from the fact
that, for G a type (IIb) embedding relative to v and C, reflecting G across the vertical axis at
v = [0] results in a type (II) embedding relative to v and C ′, where C ′ denotes the reflection of
C across the vertical axis.

For either type of embedding, the method of proof is similar. For example, in the case
where G has a type (I) Euler trail E, the subtrail r, minus the edges in r ∩ S[0], decomposes
into a number of consecutive subtrails, r1, r2, . . . , rm, of E. Similarly, s \(s ∩ S[0]) yields a
decomposition, s1, s2, . . . , sm′ . Since C (or its reverse) is a consecutive subtrail of E outside
S[0], then there is a j such that C (or its reverse) is a consecutive subtrail of one of rj or sj .
The goal is to change G within S[0] so that degG′ ([i]) � 2, 0 � i � 20, and so that G′ has an
Euler trail E′ containing ri (or its reverse), for each i = 1, . . . ,m, and si (or its reverse), for
each i = 1, . . . ,m′, as consecutive subtrails (not necessarily in the same order as in E). In this
case, the trails ri , i = 1, . . . ,m, and sj , j = 1, . . . ,m′, are said to be essentially preserved in
E′ and thus C (or its reverse) will be a consecutive subtrail of E′. The appropriate altering of
G ∩ S[0] is accomplished by a detailed case analysis.

4.2.1. G is type (I) relative to v and C. By lemma 3, [0] is not a cut vertex. Thus, the removal
of any of the four edges incident on [0] does not disconnect G. Let E be a type (I) Euler trail
of G relative to v and C.

Consider the set F of four L-shaped subgraphs of S[0] given byF = {[4, 5]∪[1, 5], [1, 6]∪
[2, 6], [2, 7]∪ [3, 7], [3, 8]∪ [4, 8]}, with corresponding corners given by the four vertices [5],
[6], [7] and [8]. Letting L be any L-shape L ∈ F , we observe that L �⊆ G. This is because
each of the vertices incident on L has degree 2 in G, and hence L ⊆ G implies that the edges
of L are traversed by both r and s, contradicting the fact that E is a trail.

If the edges of L (as in figure 4) form a consecutive subtrail of s (denoted by L ⊂ s), then
L is said to produce a twist in s if the order of its three vertices is [15], [6] and [16], while
traversing s from [2] to [4]; otherwise L produces no twist in s.

Using the above facts and definitions, the problem is reduced to the following cases.
Solutions are presented in figure 5. Any configurations not shown in figure 5 can be obtained
by symmetry arguments from those shown in figure 5.

(1) One of [5], [6], [7] or [8] is unoccupied: a flip transformation yields G′ with n edges.
Figure 5(a) shows the configuration and solution when [8] is unoccupied.

(2) [5], [6], [7], [8] and an edge from one of the L-shapes in F is occupied: a U-turn
transformation yields G′ with n − 2 edges. Figure 5(b) shows the solution for the case
where edge [4, 8] is occupied.

(3) [5], [6], [7] and [8] are occupied, but no edge from any of the L-shapes in F is occupied:
hence all four L-shapes BkL, L, 
 and Bk
 must be occupied. Note that when L ⊂ r , the
configuration may be reflected through the line y = x in order to obtain the case L ⊂ s,
after appropriate relabelling of the vertices. Thus, without loss of generality, suppose
L ⊂ s. Therefore, [10, 15] is not occupied, since r and s share no common edge.

(a) [11, 16] is occupied: figure 5(c) shows the solution G′ with n− 4 edges.
(b) [11, 16] is not occupied and

(i) L produces a twist in s: figure 5(d ) yields G′ with n− 2 edges.
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Figure 5. G is type (I) relative to v = [0] and C. (a)–( f ): solutions. Bold solid edges are occupied,
dashed edges are not occupied, and fine solid edges may or may not be occupied. Double hash
marks indicate edges which have been removed, during the solution. In figure (a), the hollow circle
indicates an unoccupied vertex.

(ii) L produces no twist in s and 
 ⊂ r: then [11, 17] is not occupied, and figure 5(e)
yieldsG′ with n− 2 edges.

(iii) L produces no twist in s and 
 ⊂ s: then [12, 18] is not occupied, and figure 5( f )
yieldsG′ with n− 2 edges.

4.2.2. G is type (II) relative to v and C. We note that E = Cp ∪ Cq is the union of two

consecutive closed subtrails containing p and q, respectively, where Cp =
−→

[0, 1], p,
−→

[2, 0] and

Cq =
−→

[0, 3], q,
−→

[4, 0]. The basic idea is to break Cp apart from Cq at their common vertex [0],
transforming them into separate closed trails Cp �−→ tp and Cq �−→ tq . The new trails tp and
tq are then rejoined to form one single consecutive closed trail. All transformations take place
inside S[0], in a manner that reduces the degree of [0] from 4 to 2, introduces no new vertices
of degree 4 in the graph, and essentially preserves consecutive subtrails of E outside S[0]. The
fact that this is accomplished successfully is self-evident in the cases depicted in figures 7 and
10, while more detailed explanations are provided in the cases depicted in figures 9 and 11.
For future reference, we define the following edges in table 1, which are labelled in figure 6.
The proof involves a case analysis, as outlined below.

(1) At least one of [5] or [7] is unoccupied: a flip transformation yields G′ with n edges.
Figure 1(a) shows the solution when [5] is unoccupied.
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Figure 6. The ten edges α through λ are labelled here.

Table 1. Edges.

α β γ δ ζ η θ ι κ λ

[3, 8] [4, 8] [1, 6] [2, 6] [6, 15] [6, 16] [8, 19] [8, 20] [11, 17] [11, 16]

(2) [5], [7], and one of [4, 5], [1, 5], [2, 7] or [3, 7] are occupied: a U-turn transformation
yields G′ with n − 2 edges. Figure 1(b) shows the solution for the case where [4, 5] is
occupied.

(3) [5] and [7] are occupied, and none of the edges [4, 5], [1, 5], [2, 7] or [3, 7] are occupied:
this implies that BkL and 
 must each be occupied. Now, either BkL and 
 can both be
in the same subtrail (either p or q), or else one of BkL and 
 is contained in p, while the
other is contained in q.

(a) BkL and 
 are both in the same subtrail: without loss of generality, assume both are
contained in p.

(a1) [8] is not occupied: G′ with n edges is obtained as shown in figure 7(a).
(a2) [8] is occupied:

(a2.1) α and β are occupied: remove the four edges α, β, [0, 3] and [0, 4] to
obtain G′ with n− 4 edges.

(a2.2) One of α or β is occupied: obtain G′ with n − 2 edges, as shown in
figure 7(b) for the case where α is occupied.

(a2.3) α and β are unoccupied: therefore, Bk
 is occupied.
(a2.3.1) [6] is unoccupied: obtainG′ with n edges, as shown in figure 7(c).
(a2.3.2) [6] is occupied: note first that it is not possible to have both γ and δ

occupied at once (or else BkL and 
 could not be contained in p).
(a2.3.2.1) One of γ or δ is occupied: obtain G′ with n− 2 edges as shown in

figure 7(d ) for the case where γ is occupied.
(a2.3.2.2) γ and δ are unoccupied: hence L is occupied.
(a2.3.2.2.1) L ⊂ q: hence both [10, 15] and [11, 16] are unoccupied (otherwise

L would be in p). ThusG′ with n− 4 edges is obtained as shown in figure 7(e).
(a2.3.2.2.2) L ⊂ p: note that at most one of [11, 16] or [10, 15] is occupied

(otherwise BkL and 
 could not be contained in p).
(a2.3.2.2.2.1) One of [11, 16] or [10, 15] is occupied: G′ with n − 4 edges is

obtained as shown in figure 7( f ) for the case where [11, 16] is occupied.
(a2.3.2.2.2.2) [11, 16] and [10, 15] are unoccupied: then the three L-shapes,

BkL, L and 
 may be met in six possible orders, while traversing p from [1] to
[2], as illustrated in cases (I)–(VI) in figure 8. Because of both geometry and
the order in which the three L-shapes are traversed, we observe that case (V)
may be flipped across the line y = x to obtain case (III), and case (VI) may be
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Figure 7. Solutions for cases (3a1)–(3a2.3.2.2.2.1). Bold solid edges are occupied; dashed edges
are not occupied; and fine solid edges may or may not be occupied. Double hash marks indicate
edges which have been removed, during the solution.

flipped across the line y = x to obtain case (IV). We, therefore, need to solve
only the first four cases (I)–(IV). To each of these four cases, as illustrated in
figure 9(a), we apply step (1): remove the four edges [0, 1], [0, 2], [2, 11] and [6,
16], and add the two edges [1, 6] and [11, 16]. Step (1) does not affect the closed

trail Cq , and hence yields the transformation tq = Cq =
−→

[0, 3], q,
−→

[4, 0]. Step (1)
does, however, seal off Cp into either one or two closed trails, depending on the
direction of traversal through L.

(a2.3.2.2.2.2.1) L is traversed from right to left: hence Cp gets sealed off into
one closed trail tp as in figure 9(b). As illustrated in figure 9(d ), we obtain G′

with n − 2 edges, by connecting tp to tq using step (2): remove the two edges
[7, 18] and [3, 12], and add the two edges [3, 7] and [12, 18].

(a2.3.2.2.2.2.2) L is traversed from left to right: hence Cp gets sealed off into
two separate closed trails tp1

and tp2
as shown in figure 9(c). In this case each of

cases (I)–(IV) in figure 8 must be treated separately, as follows:
(I) Since 
 ⊂ tp2

, applying step (2) will connect tp2
and tq into one closed trail,

tq∪p2
; and since BkL ⊂ tp1

, then as illustrated in figure 9(e), we finally obtain
G′ with n− 2 edges, by connecting tq∪p2

and tp1
using step (3): remove the

two edges [5, 13] and [4, 9], and add the two edges [4, 5] and [9, 13].
(II) Since 
 ⊂ tp1

, applying step (2) will connect tp1
and tq into one closed trail,

tq∪p1
; and since BkL ⊂ tp2

, then as illustrated in figure 9( f ), we obtain G′

with n− 2 edges, by connecting tq∪p1
and tp2

using step (3), as described in
(I) above.
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BkL L Γ

L BkL Γ

Γ BkL L

Γ L BkL

BkL Γ L

L Γ BkL

I. II.

III. IV.

V. VI.

Figure 8. The six subcases for case (3a2.3.2.2.2.2). Solid edges are occupied and dashed edges
are not occupied. While traversing p from [1] to [2], the three L-shapes are met in the following
order: (I) BkL, L, 
; (II) 
, L, BkL; (III) L, BkL, 
; (IV) L, 
, BkL; (V) BkL, 
, L; and (VI) 
,
BkL, L.

(III) Since 
 ⊂ tp2
, applying step (2) will connect tp2

and tq into one closed trail,
tq∪p2

; and since BkL ⊂ tp2
also, then as illustrated in figure 9(g), we obtain

G′ with n− 2 edges, by connecting tq∪p2
and tp1

as follows: remove the two
edges [5, 14] and [1, 10], and add the two edges [1, 5] and [10, 14].

(IV) Since 
 ⊂ tp2
and BkL ⊂ tp2

, the same steps apply, as described in (III)
above.

(b) BkL and 
 both come from different subtrails: without loss of generality, assume
that BkL is contained in p, while 
 is in q.

(b1) One of [6] or [8] is unoccupied: obtainG′ with n edges, as shown in figure 10(a)
for the case where [6] is unoccupied.

(b2) [6] and [8] are occupied. This case is split into two major subcases, depending
on the occupational states of the four edges α, β, γ or δ, as follows:

(b2.I) Edgesα, β, γ and δ are unoccupied: hence L and Bk
 are both occupied.
(b2.I.1) L ⊂ q: hence [10, 15] and [11, 16] are unoccupied. Obtain G′ with

n− 4 edges as in case (3a2.3.2.2.1), following figure 7(e).
(b2.I.2) L ⊂ p: there are two subcases depending on the order in which we

meet BkL and L, while traversing p from [1] to [2]:
(b2.I.2.i) First BkL, then L: as illustrated in figure 11(a), apply step (1):

remove the four edges [0, 1], [0, 2], [1, 10] and [6, 15], and add the two edges
[10, 15] and [2, 6]. Step (1) does not affect the closed trail Cq and hence yields

the transformation tq = Cq =
−→

[0, 3], q,
−→

[4, 0]. Step (1) does, however, seal off
Cp into either one or two closed trails, depending on the direction of traversal
through L.

(b2.I.2.i.1) L is traversed from right to left: Cp gets sealed off into one closed
trail tp, as in figure 11(b). As illustrated in figure 11(d ), we obtainG′ with n− 2
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Figure 9. Solutions for case (3a2.3.2.2.2.2). Solid edges are occupied and dashed edges are not
occupied. Double hash marks indicate edges which have been removed during the solution.

edges, by connecting tp to tq using step 2: remove the two edges [7, 17] and
[2, 11], and add the two edges [2, 7] and [11, 17].

(b2.I.2.i.2) L is traversed from left to right: Cp gets sealed off into two separate
trails tp1

and tp2
as shown in figure 11(c). Since [2, 11] ⊂ tp2

, applying step (2)
from (b2.I.2.i.1) above, will connect tp2

and tq into one closed trail, tq∪p2
; and

since BkL ⊂ tp1
then, as illustrated in figure 11(e), we finally obtain G′ with

n − 2 edges, by connecting tq∪p2
and tp1

as follows: remove the two edges
[5, 13] and [4, 9], and add the two edges [4, 5] and [9, 13].

(b2.I.2.ii) First L, then BkL: then, as illustrated in figure 11( f ), we apply
step (a): remove the four edges [0, 1], [0, 2], [2, 11] and [6, 16], and add the two
edges [11, 16] and [1, 6]. Step (a) does not affect the closed trail Cq and hence

yields the transformation tq = Cq =
−→

[0, 3], q,
−→

[4, 0]. Step (a) does, however, seal
off Cp into either one or two closed trails, depending on the direction of traversal
through L.
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Figure 10. Solutions for case (3b). Bold solid edges are occupied, dashed edges are not occupied,
and fine solid edges may or may not be occupied. Double hash marks indicate edges which have
been removed during the solution. In figures (d ) and (g), a hollow circle indicates an unoccupied
vertex.

(b2.I.2.ii.1) L is traversed from right to left: Cp gets sealed off into one closed
trail tp as in figure 11(g). As illustrated in figure 11(i), we obtain G′ with n − 2
edges, by connecting tp to tq using step (b): remove the two edges [4, 9] and
[5, 13], and add the two edges [4, 5] and [9, 13].

(b2.I.2.ii.2) L is traversed from left to right: Cp gets sealed off into two separate
closed trails tp1

and tp2
as shown in figure 11(h). Since BkL ⊂ tp2

, applying
step (b) from (b2.I.2.ii.1) above, will connect tp2

and tq into one closed trail,
tq∪p2

; and since [1, 10] ⊂ tp1
then, as illustrated in figure 11( j), we finally obtain
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Figure 11. Solutions for case (3b.2). Solid edges are occupied and dashed edges are not occupied.
Double hash marks indicate edges which have been removed during the solution.

G′ with n − 2 edges, by connecting tq∪p2
and tp1

as follows: remove the two
edges [1, 10] and [5, 14], and add the two edges [1, 5] and [10, 14].

(b2.II) At least one of the edges α, β, γ and δ is occupied: as a shorthand notation,
we mention that an edge (or vertex) is occupied by setting it equal to 1; likewise, an
edge (or vertex) which is not occupied is set equal to 0.
The four possible subcases are as follows:

(b2.II.1) γ = 1: then δ = 0 (or else BkL could not be in p). ObtainG′ with n− 2
edges as shown in figure 10(b).

(b2.II.2) α = 1: then β = 0 (or else 
 could not be in q). Rotate the figure by
180◦, and after appropriate relabelling of the vertices, follow the same steps as in
(b2.II.1) above.

(b2.II.3) α = γ = 0 with β = 0: then δ = 1, so we obtainG′ with n− 2 edges as
shown in figure 10(c).

(b2.II.4) α = γ = 0 with β = 1: assume, without loss of generality, that δ = 1
(for if not, then rotation of the graph by 180◦ and appropriate relabelling would yield
case (b2.II.3), above). Next, observe that the case where ι = 1 and [9] = x ∈ {0, 1} it
may be rotated by 180◦ to yield the case where η = 1 and [11] = x, after appropriate
relabelling. Therefore, this case further splits into three subcases, as follows:

(b2.II.4.1) η = 1 and [11] = 0: obtain G′ with n− 2 edges as in figure 10(d ).
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(b2.II.4.2) η = 1 and [11] = 1: then either λ = 1 or κ = 1, but not both, else p
and q would share a common edge.

(b2.II.4.2.1) λ = 1: obtain G′ with n− 4 edges as in figure 10(e).

(b2.II.4.2.2) κ = 1: obtain G′ with n− 4 edges as in figure 10( f ).

(b2.II.4.3) η = 0 and ι = 0:

(b2.II.4.3.1) [9] = 0: obtainG′ with n− 2 edges as in figure 10(g).

(b2.II.4.3.2) [9] = 1:

(b2.II.4.3.2.1) [9, 20] is occupied and [9, 20] ⊂ p: obtain G′ with n− 2 edges as
in figure 10(h).

(b2.II.4.3.2.2) [9, 20] is occupied and [9, 20] ⊂ q: obtain G′ with n− 2 edges as
in figure 10(i).

(b2.II.4.3.2.3) [9, 20] is unoccupied: therefore, [9, 13] is occupied, and we obtain
G′ with n− 4 edges as in figure 10( j). �

5. Removal of the top vertex of degree 4 in a closed Eulerian graph

Given a plane embedding G, let V = {v ∈ VG : degG(v) = 4}. We define the top vertex of
degree 4 in G, to be the topmost vertex of the set of rightmost vertices contained in V. For
this discussion, we assume that G is an n-tau, for τ ∈ G0

4 (k), for some k � 1, and let [A] be
the top vertex of degree 4 in G.

The term box will be used to refer to a subgraph of Z
2 induced by a vertex set of

the form R = {(x, y) ∈ Z
2|a1 � x � b1, a2 � y � b2}. A unit box is one for which

b1 − a1 = b2 − a2 = 1. Since R completely determines the box, we will typically use the
vertex set R to refer to the box. Given a vertex v ∈ Z

2, the notation v +R will be used to refer
to the box whose vertex set is obtained by translating each of the vertices in R by the vector v.
The inside and outside of a box R are defined in a manner consistent with the definition given
earlier for the inside and outside of S[0].

Label the four corners of a unit box B in Z
2 by [Qi], for 0 � i � 3, clockwise starting

with [Q0] in the lower left-hand corner. For each i, let ji ≡ (i + 1)mod 4, and define the
edge Ei between the two adjacent vertices [Qi] and

[
Qji

]
as Ei = [

Qi,Qji

]
for 0 � i � 3.

Then B is the union of these edges, B = ∪3
i=0Ei , see figure 12(a). For the purposes of this

discussion we assume, for 0 � i � 3, that [Qi] is in the safe-zone, the half-plane of vertices
strictly greater (lexicographically) than [A] (the shaded region shown in figure 12(a)). From
this, it follows that [A] �∈ ∪3

i=0{[Qi]}, and that degG([Qi]) ∈ {0, 2}, for 0 � i � 3.

Lemma 5. B being in the safe-zone implies that B �⊂ G, since otherwise [A] would be
disconnected from B in G (see figure 12(b)).

Define the U-turn Ui by the three-edged U-shape Ui = B\Ei . If Ui ⊂ G, then by lemma
5, Ei �∈ G. Hence the U-turn reduction on Ui ⊂ G, which replaces the three edges of Ui by
the single edge Ei is well defined and yields the (n− 2)-tau Gui = (G\Ui) ∪ Ei .

Next, define Li to be the L-shape Li = Ei ∪ Eji ⊂ B, where Ei and Eji are the two
edges incident on

[
Qji

]
. If Li ⊂ G and (B\Li) ∩ EG = φ then the flip of Li with respect to

B, which replaces the two edges of Li by the two edges B\Li is well defined and yields the
n-tauGLi = (G\Li) ∪ (B\Li).
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Figure 12. [A] is the top vertex of degree 4 of G. (a) The unit box B in the safe-zone, indicated by
the shaded region. (b) B �⊂ G. (b)–(e) Bold solid (dashed) lines indicate occupied (unoccupied)
edges. Light solid lines indicate edges which may or may not be occupied. (c) If G is a type (I)
or (IIb) embedding, obtain G1 = πG by a 90◦ clockwise rotation of G, followed by appropriate
relabelling. (d ) Solution for case (1) deg([E]) = 0, base step. Double hash marks indicate edges
which have been removed during solution. (e) Label eight additional vertices to facilitate the
discussion of case (2) deg([E]) = 2.

Lemma 6. Let τ ∈ G0
4(k), for some k � 1, and G be an n-tau. Let R be the box

R = {(x, y) ∈ Z
2 | −5 � x � 5,−5 � y � 5}, and suppose that [A] is the top vertex

of degree 4 in G. Then it is possible, by only altering edges and vertices inside the box [A] +R,
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centred on [A], to construct a new closed Eulerian graph G′ with m edges and k′ vertices of
degree 4, such that all the following conditions are met:

(i) degG′([A]) = 2.
(ii) G′ = G outside the box [A] + R.

(iii) m ∈ {n− 4, n− 2, n} and 0 � k′ < k.
(iv) No new vertices of degree 4 are introduced: {w ∈ G′ | degG′(w) = 4} ⊂ {w ∈ G |

degG(w) = 4}. Hence, for k′ � 1, v ∈ {w ∈ G′ | degG′(w) = 4} ⇒ v < [A]
(lexicographically).

(v) Given an open trail C of G consisting of edges outside [A] + R and such that G contains
an Euler trail which contains C as a consecutive subtrail, then G′ also has an Euler trail
which contains C as a consecutive subtrail.

Proof. The basic idea of the proof is to reduce the degree of [A] by performing a
sequence of flip transformations and/or U-turn transformations until there is one less vertex of
degree 4 in the embedding or the top vertex of degree 4 in the embedding has been moved
so that it becomes an isolated vertex of degree 4. In the latter case, lemma 4 can be applied
to remove the resulting isolated vertex of degree 4. Initially, the embedding may need to be
rotated and relabelled so that the transformations can be applied in the south-east direction.

The first step of the proof depends on whether G is a type (I), (II), or (IIb) embedding
relative to [A] and C, with the types as defined in section 4.2. In particular, if G is a type (I) or
(IIb) embedding we first rotate G clockwise by 90◦, and then relabel the embedding as shown
in figure 12(c) to obtain G1. Note that the safe-zone is rotated as well. If G is type (II), set
G1 = G. In either case, let π be the operator that transforms G to G1, i.e. G1 = πG.

From equations (4.1)–(4.3), G1 has an Euler trail E1 such that L̂ = ([B,A], [A,D]) is a
consecutive subtrail ofE1. Thus by lemma 2, the edges in L̂ can be removed fromG1 without
disconnecting it.

We next note a useful result for the case that G1 = G is type (II) relative to [A] and C.
For this type of embedding, there is an Euler trail Ê of G1 in the following form,

Ê =
−→

[A,C]; p;
−→

[D,A];
−→

[A,B]; q;
−→

[H,A] (5.1)

with C or rev(C) a consecutive subtrail of one of p or q. The useful result is that p and
q cannot share any common vertices in [A] + R. To see this, suppose that there exists
[I ] ∈ [A]+R such that [I ] is used in both p and q. Then another Euler trail ofG1 is as follows:

Enew =
−→

[A,C];p1; rev(q1);
−→

[B,A];
−→

[A,D]; rev(p2); q2;
−→

[H,A], where p = (p1; [I ];p2) and
q = (q1; [I ]; q2). Since [I ] ∈ [A] + R, it follows that C (or its reverse) must be a consecutive
subtrail of one of the four subtrails, p1, p2, q1 or q2. But, this means that G is type (I) relative
to [A] and C, which is a contradiction.

One important consequence of this is that the edges e1 = [B,E] and e2 = [D,E] cannot
both be occupied if G1 = G. Since otherwise, p and q must share at least one of the three
vertices [D], [E] or [B], for any way the edges e1 and e2 are traversed by the two subtrails p
and q.

In fact, the edges [B,E] and [D,E] cannot both be occupied inG1 for the caseG1 �= G,
either. If we assume to the contrary that e1 ∪ e2 ⊂ G, then degG1

[D] = degG1
[E] =

degG1
[B] = 2, since all three of these vertices are in the safe-zone. This would imply that

removal of the edges in L̂ disconnectsG1 which is a contradiction.
We are now ready to proceed with the case analysis of the proof.

(1) degG1
([E]) = 0: perform the base-step: remove the edges in L̂ and add the L-shape

[B,E] ∪ [D,E], see figure 12(d ), to obtain πG′ with n edges.
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Figure 13. Solution for some of the cases arising in section 5.1, where degG1
([B]) = 2.

(a) Case (A), for [B,E] occupied. (b) Case (B.1), degG1
([W ]) = 0. (c) Case (B.2, 1), for [W,E′′]

occupied. (d ) Case (B.2, 2.1), degG1
([X]) = 0. (e) Case (B.2, 2.2a), for [W ′, X] occupied.

( f ) Case (B.2, 2.2b) results in the isolated vertex of degree 4, X.

(2) degG1
([E]) = 2: to facilitate discussion of this case, eight additional vertices are labelled,

as shown in figure 12(e). Note that each of these eight additional vertices either have
degree 0 or 2, since they are each in the safe-zone.

The solution splits into two subcases: either degG1
([B]) = 2, or degG1

([B]) = 4. These
subcases are outlined in sections 5.1 and 5.2.

5.1. degG1
([B]) = 2 = degG1

([E])

This splits into two further subcases (A) and (B), as follows:

(A) One of [D,E] or [B,E] is occupied: perform a U-turn transformation on this edge to
obtain πG′ with n − 2 edges and k − 1 vertices of degree 4. This step is illustrated in
figure 13(a), for [B,E] occupied.

(B) [B,E] and [D,E] are unoccupied: in this case, 
 = [E,E′] ∪ [E,E′′] ⊂ G1.
(B.1) degG1

([W ]) = 0: obtain πG′ with n edges from G1, as in figure 13(b), by
performing the following steps: a flip on 
 with respect to the unit box B1 (with corners
given by [E], [E′], [E′′] and [W ]) and then the base-step.

(B.2) degG1
([W ]) = 2: by lemma 5, it is impossible to have both edges [W,E′] and

[W,E′′] occupied simultaneously. Therefore, this case further splits into the following
subcases:
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(1) One edge, e ∈ {[W,E′], [W,E′′]} is occupied: perform a U-turn reduction on
U = 
∪{e}, with respect to the unit boxB1 followed by the base-step, to obtain πG′

with n− 2 edges. This step is illustrated in figure 13(c), when [W,E′′] is occupied.
(2) [W,E′] and [W,E′′] are unoccupied: then 
̃ = [W,W ′] ∪ [W,W ′′] ⊂ G1.

(2.1) degG1
([X]) = 0: as illustrated in figure 13(d ), πG′ with n edges is obtained

by following the steps: a flip on 
̃ with respect to the unit box B2 (with corners given
by [W ], [W ′], [W ′′] and [X]), a flip on 
 with respect to B1, and then the base-step.

(2.2) degG1
([X]) = 2: by lemma 5, it is not possible to have both [W ′,X] and

[W ′′,X] occupied simultaneously.
(a) One edge, f ∈ {[W ′,X], [W ′′,X]} is occupied: perform a U-turn reduction on

Ũ = 
̃ ∪ {f }, with respect to the unit box B2, then perform a flip on 
 with
respect to B1, and finally perform the base-step. The resulting πG′ has n − 2
edges. This step is illustrated in figure 13(e), when [W ′,X] is occupied.

(b) [W ′,X] and [W ′′,X] are unoccupied: in this case, we know that ˜̃
 =
[X,X′] ∪ [X,X′′] ⊂ G1. So, first perform a flip on 
̃ with respect to B2,
second perform a flip on 
 with respect to B1, and lastly perform the base-step
to obtain G2, an embedding of a closed k-graph with n edges. The vertex [A] of
degree 4, has been moved from [A] in G to [X] inG2, and [X] is now an isolated
vertex of degree 4 inG2 (see figure 13( f )). Thus, lemma 4 can be applied at [X]
to obtain πG′ with m edges, where m ∈ {n, n− 2, n− 4}.

5.2. degG1
([B]) = 4 (hence, necessarily, degG([E]) = 2 andG1 = G is type (II) relative to

[A] and C).

Note that this means k � 2 and [D,E] is not in G1. Since G1 is a type (II) embedding, there
is an Euler trail of G1, Ê, in the form given by equation (5.1). Observe that neither [H ] nor
[B] can appear in p, since otherwise p and q would share a common vertex. It follows from
[B,E] ⊂ G1 that [E] is in q. Also, since ([D,A]; [A,B]) is a consecutive subtrail of Ê, these
edges can be removed from G1 and the edge [D,E] can be added to obtain G2 which has an
open Euler trail in the form

Ê2 = [B]; q1; [E]; q2;
−→

[H,A];
−→

[A,C];p;
−→

[D,E] (5.2)

where q = (q1; [E]; q2) and C (or its reverse) is a consecutive subtrail of one of p, q1 or q2.
This leads to two subcases, outlined below:

(A)
−→

[E,B] is the first edge of q2: in this case, obtainG′, with n− 2 edges and k − 2 vertices
of degree 4, by removing the edge [E,B] from G2; note that then G′ has a closed Euler

trail in the form (
−→

[A,C];p;
−→

[D,E]; rev(q1); [B]; q ′
2;

−→
[H,A]), where q ′

2 = q2−
−→

[E,B].
Basically G′ is obtained from G1 by performing a U-turn transformation, as in
figure 14(a).

(B)
−→

[B,E] is the last edge of q1: remove [B,E] fromG2 to obtain the graphG3. If q1 =
−→

[B,E],
then set G′ = G3. Otherwise, note that G3 consists of two edge-disjoint closed subtrails
ofG2, ÊJ and ÊH , which together use all the edges of G3 (i.e. all but three edges ofG1)
exactly once, where

ÊJ = [ J ]; q ′
1;

−→
[B, J ] (5.3)

with q ′
1 being q1 − [B,E] − [B, J ] except that it is traversed in the direction [ J ] to [B],

and

ÊH =
−→

[H,A];
−→

[A,C];p;
−→

[D,E]; q2; [H ]. (5.4)
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Figure 14. Figures for cases in section 5.2, degG1
([B]) = 4: (a) cases (A) and (Bii); (b) case (Bi).

We consider two subcases depending on whether or not the edge [J,H ] is occupied
in G1.

(i) [J,H ] unoccupied in G1: obtain G′ with n − 2 edges and k − 2 vertices of
degree 4 from G1 as in figure 14(b). This is equivalent to G′ = G3 ∪ {[A,B], [J,H ]} −
{[H,A], [J,B]} and hence G′ has a closed Euler trail of the form (

−→
[A,C];p;

−→
[D,E];

q2;
−→

[H, J ]; q ′
1;

−→
[B,A]).

(ii) [J,H ] occupied inG1: G3 is thus connected since ÊJ and ÊH both intersect at the
vertex [I ] ≡ [H ] or [J ], depending, respectively, on whether [J,H ] is used in ÊJ or in
ÊH . Also, since C does not intersect [A] + R, a closed Euler trail of G3 which contains
C (or its reverse) as a consecutive subtrail can be obtained as follows: follow ÊH until q2

meets [I ], then insert a cyclic permutation of ÊJ going from [I ] back to [I ], and finally
continue on q2 from [I ] to the end of q2. Hence G′ = G3 with n − 2 edges and k − 2
vertices of degree 4 and is essentially obtained fromG1 as in figure 14(a). �

6. Removing the top vertex in an open Eulerian graph

Corollary 6. Let τ ∈ G2
4(K), for some K � 1, and G be an N-tau. Let R and R̃ be the

boxes R = {(x, y) ∈ Z
2| − 5 � x � 5,−5 � y � 5} and R̃ = {(x, y) ∈ Z

2| − 6 � x � 6,
−6 � y � 6}, and suppose that [A] is the top vertex of degree 4 in G. Then it is possible, by
only altering edges and vertices inside the box [A] + R̃, centred on [A], to construct a new
open Eulerian graph G

′ with m edges and k′ vertices of degree 4, such that all the following
conditions are met:

(i) degG
′([A]) = 2.

(ii) G
′ = G, outside the larger box [A] + R̃.

(iii) G
′ = G, outside the smaller box [A] + R, for all but at most two edges, which may have

been deleted from G to obtain G
′.

(iv) max(4, N − 220) � m � N and 0 � k′ < K .
(v) No new vertices of degree 4 are introduced: {w ∈ G

′ | degG
′(w) = 4} ⊂ {w ∈ G |

degG(w) = 4}. Hence, for k′ � 1, v ∈ {w ∈ G
′ | degG

′(w) = 4} ⇒ v < [A], in the
lexicographical ordering of vertices in Z

2.

Proof. Label the two odd vertices of G by a and b, so that [a] < [b], in lexicographical
order. For the given N-tau G, prescribe an Euler trail, EG from [a] to [b]. Then EG will
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Figure 15. (a) EG = [a]; qa; [A]; p; [A]; qb; [b], where deg([a]) ∈ {1, 3}, deg([b]) ∈ {1, 3}, and
the subtrails qa and qb may or may not intersect with p or with each other. (b) Case (A), when �a
lies entirely inside [A] + R, results in the trail E′ = �\�a .

necessarily be of the form EG = [a]; qa; [A];p; [A]; qb; [b], where degG([a]) ∈ {1, 3} and
degG([b]) ∈ {1, 3}, and the subtrails qa and qb may or may not intersect with the subtrail p,
or with each other (see figure 15(a)). The approach will be to obtain an open trail E′ from
EG, whose underlying graph will provide us with the desired G

′, satisfying the conditions of
corollary 6. In symbols, we let G

′ = u.g.(E′) denote the underlying graph of E′ obtained by
ignoring the orientation of the edges of E′.

First, set � := EG, and for each v ∈ {a, b}, denote by �v the consecutive subtrail
of � with qv ⊂ �v such that �v contains exactly one more edge than qv. In particular,
deg�v ([A]) = 2. Next, one of the following two mutually exclusive cases will occur, from
which we obtain E′.

(A) One of�a or�b lies entirely inside the box [A] +R: in this case, if�a lies entirely inside
[A] +R, then set E′ := �\�a and we are done; otherwise�b lies entirely inside [A] +R,
so set E′ := �\�b, and we are done. See figure 15(b).

(B) �a and�b each have edges outside the box [A] +R: in this case, the first goal is to ensure
that both the odd vertices [a] and [b] are outside the box [A] +R. This is done as follows.
If [a] lies inside [A] +R, then modify� by removing consecutive first edges from it, until
the first vertex of � lies outside [A] + R, and then move the old label a to this new first
vertex. Next, if [b] lies inside [A] + R, modify � by removing consecutive last edges
from it, until the last vertex of � lies outside [A] + R, and then move the old label b to
this new last vertex. In this way, we have obtained from EG an n-edge open trail � in
Z

2 with k vertices of degree 4, where max(16, N − 206) � n � N , 1 � k � K , [A] is
the top vertex of degree 4 in �, � = EG outside [A] + R̃, and the two odd vertices [a]
and [b] lie outside [A] + R. Thus, there exists an open trail C in R

2 but outside [A] + R,
with its two odd vertices given by [a] and [b], such that�∪ C is a closed Euler trail in R

2

of the planar graph G = u.g.(� ∪ C), with no vertices of degree greater than 4 and with
G∩ I ([A] +R) a subgraph of Z

2. We observe that, since [A] is the top vertex of degree 4
of G inside the smaller box [A] + R, lemma 6 applies to G with [A] and C as above. Let
G′ be the closed Eulerian graph obtained from G via lemma 6. Note thatG′\u.g.(C) (with
any vertices that were induced by C in G suppressed) is a subgraph of Z

2 and has an open
Euler trail E′, with degE′([A]) = degG′([A]) = 2.
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Finally, we set G
′ = u.g.(E′), and show that the open trail E′, obtained in either case (A)

or case (B) above, gives G
′ its desired properties, as follows.

For case (A), the properties (i), (ii), (iii) and (v) follow immediately from the fact that the
only moves made in order to obtain E′ from EG, were to remove edges from EG, within the
box [A] + R. Next, because p had at most one edge removed from its original set of at least 4
edges and because degE′([A]) = 2, we know thatm � 4. Additionally, because no more than
216 edges could have been removed, we know that m � N − 216. Putting all this together,
we certainly have max(4, N − 220) � m � N . Finally, the inequalities 0 � k′ < K follow
from property (v) and the fact that at least one vertex of degree 4 has had its degree reduced,
namely [A]. Hence property (iv) is proved.

For case (B), properties (ii) and (iii) follow from the fact that all the adjustments to G

were made inside [A] +R, except possibly for the removal of at most two edges to ensure [a]
and [b] lie outside [A] + R. Next, property (v) follows immediately from lemma 6, since any
vertices of degree 4 introduced by the addition of C are either removed or suppressed, once C
is removed. Now, since property (v) is true, then as argued for case (A), 0 � k′ < K . Finally,
since lemma 6 affects only the n edges of �, we have that the m edges of E′ are bounded by
max(12, N − 210) � m � N , and so certainly property (iv) is satisfied, and since property (i)
was shown at the end of case (B), we are done. �

7. Removing all the vertices of degree 4

In this section, algorithms are developed for removing all vertices of degree 4 from an
embedding of either an open or closed k-graph.

7.1. Closed k-graphs

Lemma 7. There exists an integer M > 0 and a map � such that for all k � 0, for any
τ ∈ G0

4(k), and any n-tau, σ ,

σ
��−→ (ω̃,� = (ξ1, ξ2, . . . , ξj ), T = (T1, T2, . . . , Tj ′)) (7.1)

where ω̃ is an m-SAP, � is a j -tuple of lexicographically ordered vertices in Z
2, and T is a

j ′-tuple of planted plane trees with non-root vertices in Z
2, such that the following properties

hold:
(1) max{4, n− 4k} � m � n, � k2 � � j � k, and min{1, j } � j ′ � j .
(2) ξ1 > ξ2 > · · · > ξj .
(3) ∀i such that 1 � i � j ′, a vertex within the tree Ti is always lexicographically smaller

than any of its children in Ti , and lies within a box-distance M of any of its children.
Further, the only child of the root of Ti lies on ω̃.

(4) The set {ξ1, ξ2, . . . , ξj } is equal to the disjoint union of the non-root vertices of the j ′ trees

in T . Thus, if ∀i mi is the number of non-root vertices of Ti , then
∑j ′

i=1mi = j .
(5) Let RM = {

(x, y) ∈ Z
2
∣∣−M

2 � x � M
2 ,

−M
2 � y � M

2

}
be the box of side-length M. Then

ω̃ = σ in Z
2\∪ji=1(ξi + RM).

Proof. If k = 0, set ω̃ = σ , j = j ′ = 0, � = T = φ. Otherwise, the plan is to repeatedly
apply lemma 6 to the consecutive top vertices of degree 4, until all vertices of degree 4 have
been removed. Because lemma 6 allows each successive move to be made inside a box of
side-length 10, set M = 10.

Step (1). Apply lemma 6, to G = σ , with [A] = ξ1, the top vertex of degree 4 of G, to
obtain ω1 = G′, a closed Eulerian graph with n1 � n edges, and k1 < k vertices of degree 4.
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Let �1 = (ξ1) be the 1-tuple consisting of the one vertex ξ1, let T1 = (T1(ω1)) be the 1-tuple
consisting of one rooted plane tree with its single vertex ξ1 being the root, and note that the
root of T1(ω1) lies on ω1, since degω1

(ξ1) = 2. (End of step (1).)
The following statement is trivially true, for i = 1.
Statement (i). At the end of the ith step for i � 1, we have (ωi,�i, Ti ), where ωi is an

ni-edge closed Eulerian graph with ki vertices of degree 4, �i = (ξ1, . . . , ξi ) is an i-tuple of
vertices in Z

2, and Ti is an li-tuple, li � 1, of rooted plane trees, Ti = (T1(ωi), . . . , Tli (ωi)),
with vertices in Z

2, such that the following properties hold:

(I) n− 4i � ni � n and 0 � ki � k − i; 1 � li � i.
(II) ξ1 > ξ2 > · · · > ξi .

(III) ∀s such that 1 � s � li , any vertex within the tree Ts(ωi), is lexicographically smaller
than its children, and is within a box-distance M of any of its children. Further, the root
of each tree in Ti lies on ωi .

(IV) The set {ξ1, ξ2, . . . , ξi} is equal to the disjoint union of the vertices of the li trees in Ti .
Thus, if ∀s m′

s is the number of vertices of Ts(ωi), then
∑li

s=1m
′
s = i.

(V) LetR = {
(x, y) ∈ Z

2
∣∣−M

2 � x � M
2 ,

−M
2 � y � M

2

}
be the box of side-length M. Then

ωi = σ in Si ≡ Z
2\∪is=1(ξs + R). (End of statement (i).)

Next, for i � 1, and ki > 0, perform step (i + 1) below while ωi has at least one vertex
of degree 4 (ki > 0). Then go to the final step.

In the description of step (i + 1), statement (i) is assumed to be true and it is proved that,
for ki > 0, statement (i + 1) holds.

Step (i + 1). First, apply lemma 6 toG = ωi with top vertex of degree 4, ξi+1 ≡ [A] < ξi ,
to obtain ωi+1 = G′, a closed Eulerian graph with ni+1 � ni edges and ki+1 � ki − 1
vertices of degree 4. Because statement (i) is true, and since at each step the total number
of edges may decrease by no more than 4, we have that n − 4(i + 1) � ni − 4 � ni+1 � n

and 0 � ki+1 � k − (i + 1). Next observe that, by lemma 6, we have ωi+1 = ωi on
Z

2 \(ξi+1 + R) ⊇ Si+1, and by property (V) of statement (i), we have ωi = σ on Si ⊇ Si+1.
Therefore, ωi+1 = σ on Si+1. Thus, defining �i+1 ≡ �i ∪ {ξi+1} (ordered from largest to
smallest vertex), we have ωi+1 and �i+1 which satisfy properties (II) and (V) of statement
(i + 1).

We next construct Ti+1, from the set of trees Ti and the vertex ξi+1. Since we want
the root of each tree in Ti+1 to lie on ωi+1, and since we know that ξi+1 does lie on ωi+1(

degω
i+1
(ξi+1) = 2

)
, we must join the vertex ξi+1 to every tree of Ti , whose root may have been

affected by step (i +1). Specifically, we are concerned with any tree T ∈ Ti such that its root is
contained in the box ξi+1 +R, namely the set of trees T ′

i = {T ∈ Ti | root(T ) ∈ ξi+1 +R} ⊆ Ti .
We form a new tree, Tnew(i + 1), by joining every tree T ∈ T ′

i to ξi+1 by means of a line
segment in R

2, which connects root(T ) to ξi+1, and set root(Tnew(i + 1)) ≡ ξi+1. Of course,
it is possible that T ′

i = ∅, in which case, simply set Tnew(i + 1) to the rooted plane tree with
single vertex ξi+1.

Note that, by the above construction, for each v ∈ Tnew(i + 1)\ξi+1 there exists an s such
that v and all of its offspring lie in Ts(ωi). Also, root(Tnew(i+1)) = ξi+1 < v. Therefore, every
vertex in Tnew(i+1) is lexicographically smaller than its children, and lies within a box-distance
M of each of its children. Also by construction, root(Tnew(i + 1)) lies on ωi+1. Therefore, set
Ti+1 ≡ (Ti\T ′

i )∪ {Tnew(i + 1)} and Tli+1(ωi+1) = Tnew(i + 1). Since 0 � card(Ti\T ′
i ) � li � i,

it follows that 1 � card(Ti+1) ≡ li+1 � i + 1. Thus, the elements of Ti+1 may be relabelled
(preserving the previous order of the trees in Ti\T ′

i ) to give Ti+1 ≡ (T1(ωi+1), . . . , Tli+1 (ωi+1)).
We have thus constructed Ti+1 which satisfies properties (I) and (III) of statement (i + 1), since
the root of any tree in Ti \T ′

i is unaffected by the moves made in step (i + 1).
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Now we only have to verify property (IV) of statement (i + 1). It is clear from the
construction of Ti+1 that the set {ξ1, . . . , ξi+1} is equal to the vertex set of the disjoint union
of the li+1 trees in Ti+1, so that

∑li+1
s=1m

′
s = i + 1, where ∀s,m′

s is the number of vertices in
Ts(ωi+1). Thus, statement (i + 1) is proved. (End of step (i + 1).)

Final step. Since σ had a finite number of vertices of degree 4, ∃ j � 1, so that we have
performed step (i) and verified statement (i), for 1 � i � j , and ωj has kj = 0. Hence, either
j = 1, or else k > k1 > k2 > · · · > kj−1 > kj = 0. We thus define the triple (ω̃,�, T )
that satisfies the lemma, as follows: set m ≡ nj and ω̃ ≡ ωj , which is an m-edge polygon,
since it is an m-edge closed Eulerian graph with kj = 0 vertices of degree 4, and we set
� ≡ �j , j ′ ≡ lj . Lastly, we construct the set of planted plane trees, T , from the set of rooted
plane trees, Tj , as follows. Note that by the above construction, for any 1 � s < t � j ′ with
root(Ts(ωj )) = ξsj and root(Tt (ωj )) = ξtj , ξsj /∈ (ξtj +R). So, for each 1 � s � j ′, the planted
plane tree Ts is obtained from Ts(ωj ), by attaching the plant edge {ξsj , ξsj − u1/2 − u2/2} and
the new unique root vertex ξsj − u1/2 − u2/2 to Ts(ωj ). Then, set T ≡ (T1, T2, . . . , Tj ′).

We observe that j � k, since no more than k steps are required to remove k vertices of
degree 4 from σ . Also, since lemma 6 removes no more than two vertices of degree 4 at a
time, the removal of k vertices of degree 4 cannot be accomplished in fewer than � k2 � steps.
Hence, � k2 � � j � k. The rest of the lemma is an immediate consequence of the fact that
statement (j) is true. �

7.2. Open k-graphs

Let G be an n-edge embedding in Z
2 of a graph in G2

4(0). For brevity, we refer to such
an embedding as an n-USAWFF, since it can be made into an undirected SAW (USAW) by
deleting the first and/or final step of an Euler trail of the embedding.

We now pose the analogue of lemma 7 for open k-graphs. We leave it to the reader to
show that the following lemma may be proved, mutatis mutandis, using corollary 6 in the
same way as lemma 6 is used to prove lemma 7.

Lemma 8. There exists an integer M > 0 and a map � , such that for all k � 1, for any
τ ∈ G2

4(k), and any n-tau, ρ,

ρ
��−→ (ω̃,� = (ξ1, ξ2, . . . , ξj ), T = (T1, T2, . . . , Tj ′)) (7.2)

where ω̃ is an m-USAWFF, � is a j -tuple of lexicographically ordered vertices in Z
2, and

T is a j ′-tuple of planted plane trees with non-root vertices in Z
2, such that the following

properties hold:

(1) max{4, n− 220k} � m � n, 0 � j � k, and min{1, j } � j ′ � j .
(2) ξ1 > ξ2 > · · · > ξj .
(3) ∀i such that 1 � i � j ′, any vertex in the tree Ti , is lexicographically smaller than its

children, and lies within a box-distance M of any of its children. Further, the only child
of the root of Ti is an even vertex of ω̃.

(4) The set {ξ1, ξ2, . . . , ξj } is equal to the disjoint union of the non-root vertices of the j ′ trees

in T . Thus, if ∀i mi is the number of non-root vertices of Ti , then
∑j ′

i=1 mi = j .
(5) Let RM = {

(x, y) ∈ Z
2
∣∣−M

2 � x � M
2 ,

−M
2 � y � M

2

}
be the box of side-length M.

Then ω̃ = ρ in Z
2\∪ji=1(ξi + RM).

While in section 7.1, the goal was to relate embeddings of closed k-graphs to polygons,
the goal in this section is to relate embeddings of open k-graphs to USAWs. Lemma 8 almost
gets us there, by relating embeddings of open k-graphs to USAWFFs. We need to take one
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more step, by relating the set U of m-USAWFFs to the set V of (m − 2)-USAWs. We do
this by assigning the map ϒ : U → V , which transforms any m-USAWFF, G ∈ U , into an
(m − 2)-USAW, W ∈ V , by removing two edges from G in the following manner. Fix an
Euler trail, EG of G, and label the first and last directed edges as α and β. Then

W = ϒ(G) ≡ u.g.(EG\α\β). (7.3)

Since there are 3 × 3 = 9 ways to add one edge to each of the degree-1 vertices of a USAW,
the following observation is true, concerning the map ϒ .

Lemma 9. For graphs in Z
2, the pre-image of ϒ with largest cardinality has no more than

nine members: max
F∈V

|ϒ−1(F )| � 9.

8. Main theorem upper bounds

8.1. Closed k-graphs

Lemma 10. There exists a constant C > 1, such that for all k � 0

◦
En(k) � Ck

(
2n

k

)
pn. (8.1)

Proof. Let Sn,k be the set of all n-edge embeddings of closed k-graphs in Z
2 which have their

top vertex of degree 4 located at the origin (if k = 0, then the top vertex of the embedding
is located at the origin). For a given n and k, let Ln,k = |�(Sn,k)| be the number of distinct
images under� of elements of Sn,k , where �(Sn,k) = {(ω(i), �(i), T (i))}1�i�Ln,k . Here, i is a
member of the index set of all distinct images under�, and we emphasize that its value is not
being used to denote the size of the polygon, vertex list or tree list in the triple (ω(i), �(i), T (i)).
Then

◦
En(k) =

∑
σ∈Sn,k

1 =
Ln,k∑
i=1

|�−1(ω(i), �(i), T (i))| � Ln,k max
i

|�−1(ω(i), �(i), T (i))|. (8.2)

We shall calculate two upper bounds N1(k) and N2(n, k), with maxi |�−1(ω(i),

�(i), T (i))| � N1(k) and Ln,k � N2(n, k), and there will be a C such that N1(k)N2(n, k) =
Ck

(2n
k

)
pn, which will give us the desired result.

Given ji ≡ |�(i)|, note that the number of ways to add or delete edges in ji boxes is
bounded above by (2E)

ji , where E = 2M(M + 1) is the number of edges in an M ×M box.
Since the vertices specified by �(i) = (ξ1, ξ2, . . . , ξji ) determine the centres of the ji boxes in
which changes to a σ ∈ �−1(ω(i), �(i), T (i)) were made, we have

max
i

|�−1(ω(i), �(i), T (i))| � max
i
(2E)

ji �
(
24M2)k ≡ N1(k) (8.3)

where the last inequality follows from the fact that ji � k and E � 4M2.
In order to calculate N2(n, k), we first note that

Ln,k �
n∑

m=n−4k

k∑
j=� k2 �

(# ways to form a triple (ωm,�j , Tj ′ )) (8.4)

where ωm is an m-edge polygon, �j is a lexicographically ordered j -tuple of vertices in Z
2,

and Tj ′ = (T1, T2, . . . , Tj ′) is a j ′-tuple of planted plane trees. This is an inequality because the
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sum is taken over all possible m-edge polygons, regardless of whether (ωm,�j , Tj ′ ) ∈ �(Sn,k)
or not. Letting mi be the number of non-root vertices of Ti we have

∑j ′
i=1 mi = j .

The number, Pl , of abstract planted plane trees, with l � 1 non-root vertices is given
by [22]

Pl = 1

l

(
2(l − 1)

l − 1

)
(8.5)

and

Pl1Pl2 � Pl1+l2−1. (8.6)

From equation (8.5), we also note that

Pl �
(

2(l − 1)

l − 1

)
� 22(l−1) = 4(l−1). (8.7)

Because of property (3) in lemma 7,once the child of the root ofTi is chosen from the vertices of
ωm, the number of ways to choose the remainingmi−1 non-root vertices is bounded byV mi−1,
where V = 2M(M + 1) is the maximum number of ways to choose a child vertex within a
box-distance M from its parent vertex. Thus, once we have chosen j ′ sites on ωm and a
j ′-tuple (m1,m2, . . . ,mj ′), an upper bound on the number of possible j ′-tuples (T1,

T2, . . . , Tj ′) is given by
∏j ′
i=1 PmiV

mi−1, and consequently, for k � 1

Ln,k �
n∑

m=n−4k

k∑
j=� k2 �

pm

j∑
j ′=1

(
m

j ′

) ∑
{mi}

j ′∏
i=1

(
PmiV

mi−1) (8.8)

where
∑

{mi} denotes the sum over
{
mi � 1, 1 � i � j ′∣∣ ∑j ′

i=1mi = j
}
. We note also that

for j � 1 and 1 � j ′ � j

∑
{mi }

1 =
(
j − 1

j ′ − 1

)
=

(
j − 1

j − j ′

)
. (8.9)

Next, because pm � pn and V � 4M2, and by applying equations (8.6), (8.7) and (8.9) to
(8.8), we have for k � 1

Ln,k � pn

n∑
m=n−4k

k∑
j=� k2 �

j∑
j ′=1

(
m

j ′

) ∑
{mi}

Pj−j ′+1V
j−j ′

� pn

n∑
m=n−4k

k∑
j=� k2 �

j∑
j ′=1

(
m

j ′

)
4j−j

′
(4M2)

j−j ′ ∑
{mi}

1

� pn4
k(4M2)

k
n∑

m=n−4k

k∑
j=� k2 �

j∑
j ′=1

(
m

j ′

)(
j − 1

j − j ′

)

= pn(16M2)
k

n∑
m=n−4k

k∑
j=� k2 �

j∑
j ′=1

(
m

j ′

)(
j − 1

j − j ′

)
. (8.10)

We apply the Vandermonde convolution identity to the innermost sum on the last line of (8.10)
and use the fact that m + j − 1 � n + n− 1 � 2n to obtain

j∑
j ′=1

(
m

j ′

)(
j − 1

j − j ′

)
=

(
m + j − 1

j

)
�

(
2n

j

)
�

(
2n

k

)
. (8.11)
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The last inequality in (8.11) is true since 0 � j � k � n/2 and
(2n
l

)
is an increasing function

of l on the interval 0 � l � n.
Next, by using equation (8.11) and the fact that (4k + 1)(k + 1) � 10k,∀k � 1,

equation (8.10) becomes for all k � 1

Ln,k � pn(16M2)
k

n∑
m=n−4k

k∑
j=� k2 �

(
2n

k

)

� pn(16M2)
k
(4k + 1)(k + 1)

(
2n

k

)

� pn(16M2)
k
10k

(
2n

k

)

� pn(28M2)
k

(
2n

k

)
≡ N2(n, k). (8.12)

Finally, putting equations (8.2), (8.3) and (8.12) together, we have for all k � 1

◦
En(k) � N2(n, k)N1(k)

= pn(28M2)
k

(
2n

k

)(
24M2)k = (

28+4M2
M2

)k(2n

k

)
pn. (8.13)

Noting that the final upper bound in equation (8.13) is also true for k = 0, we have obtained
the required result, provided C � 28+4M2

M2. �

8.2. Open k-graphs

Lemma 11. There exist constantsD0 > 0 andD > 1, such that for all k � 0

Ĕn(k) � D0(D)
k

(
2n

k

)
cn. (8.14)

Proof. For ρ an n-tau, with τ ∈ G2
4 (k) and k � 1, define the composition mapping ϒ ◦�

ρ
�−→ (ω̃,�, T ) ϒ−→ (σ̃ ,�, T ) (8.15)

where (ω̃,�, T ) = �(ρ) as defined in lemma 8, and σ̃ = ϒ(ω̃) as defined by equation (7.3).
We note that any tree T ∈ T will remain attached (by the only child of its root) to σ̃ under
the mapping ϒ , because of property (3) of lemma 8. Hence, the composition ϒ ◦ � is well
defined.

Let Pn,k be the set of all n-edge embeddings of open k-graphs in Z
2 which have their

top vertex of degree 4 located at the origin (if k = 0, then the top odd vertex of the
embedding is located at the origin). For a given n and k � 1, the number of distinct
images, L̃n,k, under ϒ ◦ � of elements of Pn,k, is given by L̃n,k = |ϒ ◦ �(Pn,k)|, where
ϒ ◦�(Pn,k) = {σ̃ (i), �(i), T (i)}1�i�L̃n,k . Then, as was done for closed k-graphs in section 8.1,
we obtain

Ĕn(k) =
∑
ρ∈Pn,k

1 =
L̃n,k∑
i=1

|(ϒ ◦�)−1(σ̃ (i), �(i), T (i))| � L̃n,k max
i

|(ϒ ◦�)−1(σ̃ (i), �(i), T (i))|.

(8.16)
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Using arguments analogous to those used in proving lemma 10, we obtain the following
upper bound:

max
i

|(ϒ ◦�)−1(σ̃ (i), �(i), T (i))| � 9
(
24M2)k ≡ Ñ1(k) (8.17)

where M is as given in lemma 8. The extra factor of 9 that appears in the inequality above,
comes from invoking lemma 9.

The upper bound Ñ2(n, k) � L̃n,k is also obtained using arguments analogous to those
given in the proof of lemma 10. Here, we set Ṽ = 2M(M+ 1), and observe that a USAW (an
embedding of τ 2

0 ) with m edges has m − 1 even vertices and gm
(
τ 2

0

) = cm/2. We also take
care to note that, since k is not more than half the number of even vertices in any n-edged ρ,
we have 1 � j � k � (n− 1)/2, and hence the inequality

(2n
j

)
�

(2n
k

)
still stands. Thus, our

calculation proceeds as follows for k � 1:

L̃n,k �
n∑

m=n−220k−2

cm

2

k∑
j=1

j∑
j ′=1

(
m− 1

j ′

) ∑
{mi }

j ′∏
i=1

(
Pmi Ṽ

mi−1
)

� cn

2

n∑
m=n−220k−2

k∑
j=1

j∑
j ′=1

(
m

j ′

)
Pj−j ′+1Ṽ

j−j ′ ∑
{mi}

1

� cn

2

n∑
m=n−220k−2

k∑
j=1

j∑
j ′=1

4j−j
′
Ṽ j−j ′

(
m

j ′

)(
j − 1

j − j ′

)

� cn

2
4kṼ k

n∑
m=n−220k−2

k∑
j=1

(
m + j − 1

j

)

� cn

2
4k(4M2)

k
n∑

m=n−220k−2

k

(
2n

k

)

� cn

2

(
2n

k

)
(24M2)

k
k(220k + 3)

� cn

2

(
2n

k

)
(212M2)

k ≡ Ñ2(n, k). (8.18)

The last inequality in equation (8.18) is obtained by noting that k(220k + 3) � 28k,∀k � 1.
Finally, putting equations (8.16)–(8.18) together, we have for all k � 1

Ĕn(k) � Ñ2(n, k)Ñ1(k)

= cn

2

(
2n

k

)
(212M2)

k × 9
(
24M2)k = 9

2

(
212+4M2M2)k(2n

k

)
cn. (8.19)

Note that the final upper bound in equation (8.19) is also true for k = 0. Hence the desired
result is obtained provided that we chooseD � 212+4M2M2 and D0 = 9

2 . �
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